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Orthogonal Polynomial Curve Fitting 

Jeff Reid 

 

This document will explain how to implement curve fitting using orthogonal polynomial least 

square techniques.  This process is given a set of weighted data points (wi, xi, yi), and generates a 

function that "best" fits the data for a given maximum degree of polynomial.  This generated 

function can be used to "smooth" the existing data points, or to calculate new points (polynomial 

interpolation). 

 

The generated polynomial will be of the form: 
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Where bj is a set of m+1 constants, and pj is a set of m+1 orthogonal polynomials.  These 

polynomials are designed to have two properties: a recursive definition, and orthogonality. 

 

The recursive definition of the polynomials (eq 1): 
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Where A and B are sets of constants. 

 

A set of p polynomials is orthogonal if (eq 2): 
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In other words, a polynomial of any degree (j) will be linearly independent of any polynomial of 

a different degree (k), or even any linear combination of polynomials of degree other than j. 
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To generate the p polynomials, the sets of constants for A, and B need to be determined. 

 

Using the recursive definition of p for case j=0: 
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combine with the orthogonal property: 
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resulting in: 
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Generate k+1 equations, (j goes from 0 to k): 
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and substitute using recursive property (eq 3): 
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For the cases where j goes from 0 to k-2, all three terms are zero due to the orthogonal property.  

(In the first term on the left, xipj, can be expressed as a combination of polynomials from p0 to 

pk-1 which is why it is zero). 
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For j = k-1 the middle term of (eq 3) is still zero, leading to: 
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using the recursive property to replace xipk-1: 

 
p p p x p A p B pk k k i k k k k k( ) ( )     1 1 1 2  

 

the A and B terms are zero (orthogonal property) leading to: 
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For j = k the rightmost term of (eq 3) is zero, leading to: 
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Using the above equations, and given a set of weighted data points, (wi, xi), both A and B 

constant sets can be generated. 
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The definition for the function to be generated by least squares technique is: 
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where b is a set of constants to be determined. Define F to be sum of the squares of deviations: 
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substitute for gm: 
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Least squares technique involves generating m+1 partial derivatives of F with respect to each of 

the b constants,  and determining a set of b’s that result in all partial derivatives = 0, minimizing 

the sum of deviations. The m+1 partial derivative equations to be solved are (k goes from 0 to 

m): 
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Each of these m+1 equations contains all m+1 b constants, and a technique of simultaneously 

solving the m+1 the equations to determine the b’s could be used (such as matrix inversion). 

However, note that left sides of the equations are zero except for the cases j=k, due to 

orthogonality (eq 2). This allows the b’s to be calculated directly: 
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This system, given a set of weighted data points (wi, xi, yi), can be used to generate the required 

sets of constants, A, B, and b. 
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Algorithm 

 
input:  w[n], x[n], y[n]; 

 

output: b[m+1], A[m+1], B[m+1], L[m+1], W[m+1], 

        p[m+2][n]; 

 

    A[0] = 0.; 

    B[0] = 0.; 

    L[0] = 0.; 

    for(i = 0; i < n; i++){ 

        p[0][i] = 1.; 

        p[-1][i] = 0.; 

        L[0] += w[i];} 

    for(j = 0; 1; j++){ 

        W[j] = 0.; 

        for(i = 0; i < n; i++){ 

            W[j] += w[i]*y[i]*p[j][i];} 

        b[j] = W[j]/L[j]; 

        if(j == m) 

            break; 

        A[j+1] = 0.; 

        for(i = 0; i < n; i++){ 

            A[j+1] += w[i]*x[i]*p[j][i]*p[j][i]/L[j];} 

        for(i = 0; i < n; i++){ 

            p[j+1][i] = (x[i]-A[j+1])*p[j][i]-B[j]*p[j-1][i];} 

        L[j+1] = 0.; 

        for(i = 0; i < n; i++){ 

            L[j+1] += w[i]*p[j+1][i]*p[j+1][i];} 

        B[j+1] = L[j+1]/L[j];} 

 

Calculate g(x) 

 
input:  x, b[m], A[m], B[m]; 

 

output: g; 

    if(m == 0){ 

    g = b[0]; 

    return;} 

    if(m == 1){ 

        g = b[0]+(x-A[1])*b[1]; 

        return;} 

    q1 = b[m]; 

    q0 = b[m-1]+(x-A[m])*q1; 

    for(i = m-2; i >= 0; i--){ 

        q2 = q1; 

        q1 = q0; 

        q0 = b[i]+(x-A[i+1])*q1-B[i+1]*q2;} 

    g = q0; 
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Generate Standard Coefficients 

 

This algorithm will convert the three sets of constants, b, A, and B, into a set of power series 

coefficients c for the generator polynomial:  
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input:  b[m+1], A[m+1], B[m+1]; 

 

uses:   p0[m+1], p1[m+1], p2[m+1]; 

 

output: c[m+1]; 

 

    for(i = 0; i <= m; i++){ 

        c[i] = p2[i] = p1[i] = p0[i] = 0.;} 

 

    p0[0] = 1.; 

    c[0] += b[0]*p0[0]; 

 

    for(j = 1; j <= m; j++){ 

        p2[0] = p1[0]; 

        p1[0] = p0[0]; 

        p0[0] = -A[j]*p1[0]-B[j-1]*p2[0]; 

        c[0] += b[j]*p0[0]; 

        for(i = 1; i <= j; i++){ 

            p2[i] = p1[i]; 

            p1[i] = p0[i]; 

            p0[i] = p1[i-1]-A[j]*p1[i]-B[j-1]*p2[i]; 

            c[i] += b[j]*p0[i];}} 


