Mapping GF(256) to GF(16²) For Hardware Inversion of GF(256) rcgldr 3/8/07

There are 2 fields of GF(16) with primitive $\beta = 1 x + 0$, or 2 hex. This document will only use GF(16) based on the polynomial $x^4 + x + 1$.

There are 16 fields of GF(256) with primitive $\alpha = 1 x + 0$, or 2 hex. This document will only use 2 of them based on the polynomials $x^8 + x^4 + x^3 + x^2 + 1$ and $x^8 + x^7 + x^2 + x^1 + 1$.

There are 64 fields of $GF(16^2)$ with $\alpha = 1 x + 0$, or 10 hex, with GF(16) based on $x^4 + x + 1$.

Only a few of the 64 fields can be used to map from any specific GF(256). The requirement for mapping is that math operations of α 's in both GF(256) and GF(16²) fields must be identical. For example, given any *a* and *b*, and defining *c* and *d* as: $\alpha^{c} = \alpha^{a} + \alpha^{b}$ and $\alpha^{d} = \alpha^{a} \alpha^{b}$, *c* and *d* will be the same for both GF(256) and GF(16²) fields. When the two fields meet this requirement, then a field can be mapped to the other by multiplication by an 8 bit by 8 bit matrix and mapped back by with the inverse of the matrix.

For the GF(256) based on the polynomial $x^8 + x^4 + x^3 + x^2 + 1$ (11D hex), there are 4 compatible GF(16²) fields: $x^2 + 2x + 5$, $x^2 + 3x + 4$, $x^2 + 4x + 2$, and $x^2 + 5x + 3$.

For the GF(256) based on the polynomial $x^8 + x^7 + x^2 + x^1 + 1$ (187 hex), there are 4 compatible GF(16²) fields: $x^2 + 9x + 2$, $x^2 + bx + 5$, $x^2 + dx + 4$, and $x^2 + ex + 3$.

After choosing compatible fields, mapping from one to the other is accomplished by matrix multiplication. The byte to be converted is treated as an 8 row by 1 bit wide matrix, with most significant bit at the top. For example naming the byte bits as new and old:

new7			1 0	0	1	0	0	0	0	old7
new ₆		1	1 1	1	1	0	1	0	o	old ₆
new5			0 0	1	0	0	0	0	0	old ₅
new4	=	= 1	1 0	1	0	1	0	1	0	old4
new3			1 1	1	0	1	0	0	0	old ₃
new ₂) 1	0	0	0	0	0	o	old ₂
new1) 1	1	1	0	1	0	0	old1
new ₀		(0 0	1	0	0	0	0	1	old ₀

Using GF(256) based on the polynomial $x^8 + x^4 + x^3 + x^2 + 1$ (11D hex), and GF(16²) based on the polynomial $x^2 + 4x + 2 = x^2 + \beta^2 x + \beta$, the following matrices are used for mapping:

GF(256)	\rightarrow GF(16 ²)	$GF(16^2) \rightarrow GF(256)$
1 0 0 1	0 0 0 0	0 1 0 0 0 0 1 0
1 1 1 1	0 1 0 0	0 0 0 0 0 1 0 0
0 0 1 0	0 0 0 0	0 0 1 0 0 0 0 0
1 0 1 0	1 0 1 0	1 1 0 0 0 0 1 0
1 1 1 0	1 0 0 0	0 1 1 0 1 1 1 0
0 1 0 0	0 0 0 0	1 1 1 0 0 1 0 0
0 1 1 1	0 1 0 0	0 0 0 1 1 1 0 0
0 0 1 0	0 0 0 1	0 0 1 0 0 0 0 1

Inversion of a GF(256) byte is done by mapping to GF(16²) with left matrix. Let a_1 represent upper 4 bits of mapped byte, and a_0 represent lower 4 bits, so that mapped GF(16²) byte can be represented as: $a_1 x + a_0$. Defining the inverse byte as: $b_1 x + b_0$, the equations are:

$$b_1 = \frac{a_1}{2a_1^2 + 4a_1a_0 + a_0^2}$$
$$b_0 = \frac{4a_1 + a_0}{2a_1^2 + 4a_1a_0 + a_0^2}$$

After calculating the *b*'s, map the byte back using the above right matrix.

For GF(256) based on the polynomial $x^8 + x^7 + x^2 + x^1 + 1$ (187 hex), and GF(16²) field based on $x^2 + 9 x + 2 = x^2 + \beta^{14} x + \beta$, the following matrices and equations are used for mapping:

$GF(256) \rightarrow GF($	16 ²)	GF (1	→ G	F(256)			
1 0 0 1 1 1 0	0 1	1 0	0 0	0 1			
1 1 0 1 1 0 0	0 1	1 0	0 1	1 1	LO		
0 0 1 1 1 0 0	0 0	1 1	0 1	1 (0 0		
1 1 1 1 1 1 1	0 1	0 1	0 0	1 1	LO		
1 0 1 1 0 0 0	0 1	1 1	0 1	0 1	LO		
0 1 1 1 0 0 0	0 0	0 0	0 1	1 1	LO		
1 1 0 0 0 1 0	0 0	0 1	1 0	0 1	LO		
0 0 1 1 1 0 0	1 0	0 1	0 0	0 0) 1		
	h	$p_1 = \frac{1}{2a_1^2}$	a_1				
		$^{1} 2a_{1}^{2}$	$^{2} + 9a$	$a_1 a_0 +$	a_0^2		
	h	$h = \frac{9a_1 + a_0}{2}$					
	\mathcal{D}_{0}	$b_0 = \frac{9a_1 + a_0}{2a_1^2 + 9a_1a_0 + a_0^2}$					